原创

JVM内存模型及内存分配

内存模型

大致结构图

相关参数设置

线上JVM启动参数

/usr/java/default/jre/bin/java -server -Xmx4g -Xms4g -Xmn2g -Xss256K -XX:SurvivorRatio=8 -XX:MetaspaceSize=512m -Xnoclassgc -XX:MaxTenuringThreshold=7 -XX:GCTimeRatio=19 -XX:+DisableExplicitGC -XX:+UseParNewGC -XX:+UseConcMarkSweepGC -XX:+UseCMSCompactAtFullCollection -XX:CMSFullGCsBeforeCompaction=0 -XX:+CMSParallelRemarkEnabled -XX:+CMSClassUnloadingEnabled -XX:+UseCMSInitiatingOccupancyOnly -XX:CMSInitiatingOccupancyFraction=70 -XX:SoftRefLRUPolicyMSPerMB=0 -XX:+UseFastAccessorMethods -XX:+UseCompressedOops -XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps -Xloggc:/data/logs/xxx/debug/gc.20210331_082950.log -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/data/logs/xxx/debug/xxx.20210331_082950.dump -Dfile.encoding=UTF-8 -Djava.awt.headless=true -Djetty.logging.dir=/data/logs/xxx -Djava.io.tmp=/tmp -jar xxx.jar --spring.profiles.active=prod

####

-server 服务器模式
-Xmx4g 最大堆内存
-Xms4g 初始堆内存
-Xmn2g 新生代内存大小
-Xss256K 线程栈大小
-XX:SurvivorRatio=8 eden与survivor比例
-XX:MetaspaceSize=512m 元空间大小
-XX:MaxTenuringThreshold=7 该参数主要是控制新生代需要经历多少次GC晋升到老年代中的最大阈值。
-XX:GCTimeRatio=19 吞吐量 垃圾收集时间为1/(1+19),默认值为99,即1%时间用于垃圾收集。
-XX:+UseParNewGC 使用ParNew收集器
-XX:+CMSParallelRemarkEnabled 开启并发标记
-XX:+UseConcMarkSweepGC 使用CMS收集器
-XX:+UseCMSCompactAtFullCollection 和-XX:CMSFullGCsBeforeCompaction=0配合使用 意思就是GC之后对堆内存进行压缩整理
-XX:CMSFullGCsBeforeCompaction=0 
-XX:+UseCompressedOops 开启对象压缩
-XX:+PrintGCDetails 打印gc详情
-XX:+HeapDumpOnOutOfMemoryError OOM时生成dump文件
-XX:HeapDumpPath=/data/logs/xxx/debug/xxx.20210331_082950.dump dump存放路径

内存分配

类加载过程

对象创建过程

类加载检查

虚拟机遇到一条new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。new指令对应到语言层面上讲是,new关键词、对象克隆、对象序列化等。

分配内存

在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类 加载完成后便可完全确定,为 对象分配空间的任务等同于把 一块确定大小的内存从Java堆中划分出来。

这个步骤有两个问题:

  1. 如何划分内存。
  2. 在并发情况下, 可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存的 情况。
划分内存的方法
指针碰撞(Bump the Pointer)(默认用指针碰撞)

如果Java堆中内存是绝对规整的,所有用过的内存都放在一边,空闲的内存放在另一边,中间放着一个指针作为分界点 的指示器,那所分配内存就仅仅是把那个指针向空闲空间那边挪动一段与对象大小相等的距离。

空闲列表(Free List)

如果Java堆中的内存并不是规整的,已使用的内存和空 闲的内存相互交错,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录上哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例, 并更新列表上的记录

解决并发问题的方法
CAS(compare and swap)

虚拟机采用CAS配上失败重试的方式保证更新操作的原子性来对分配内存空间的动作进行同步处理。

本地线程分配缓冲(Thread Local Allocation Buffer,TLAB)

把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存。通过­XX:+/­ UseTLAB参数来设定虚拟机是否使用TLAB(JVM会默认开启­XX:+UseTLAB),­XX:TLABSize 指定TLAB大小。

初始化

内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头), 如果使用TLAB,这一工作过程也 可以提前至TLAB分配时进行。这一步操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,程序能访问 到这些字段的数据类型所对应的零值。

设置对象头

初始化零值之后,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对 象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头Object Header之中。 在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、 实例数据(Instance Data) 和对齐填充(Padding)。 HotSpot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据, 如哈 希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时 间戳等。对象头的另外一部分 是类型指针,即对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。

32位虚拟机对象内容

HotSpot源码如下:

#include "oops/oop.hpp"

// The markOop describes the header of an object.
//
// Note that the mark is not a real oop but just a word.
// It is placed in the oop hierarchy for historical reasons.
//
// Bit-format of an object header (most significant first, big endian layout below):
//
//  32 bits:
//  --------
//             hash:25 ------------>| age:4    biased_lock:1 lock:2 (normal object)
//             JavaThread*:23 epoch:2 age:4    biased_lock:1 lock:2 (biased object)
//             size:32 ------------------------------------------>| (CMS free block)
//             PromotedObject*:29 ---------->| promo_bits:3 ----->| (CMS promoted object)
//
//  64 bits:
//  --------
//  unused:25 hash:31 -->| unused:1   age:4    biased_lock:1 lock:2 (normal object)
//  JavaThread*:54 epoch:2 unused:1   age:4    biased_lock:1 lock:2 (biased object)
//  PromotedObject*:61 --------------------->| promo_bits:3 ----->| (CMS promoted object)
//  size:64 ----------------------------------------------------->| (CMS free block)
//
//  unused:25 hash:31 -->| cms_free:1 age:4    biased_lock:1 lock:2 (COOPs && normal object)
//  JavaThread*:54 epoch:2 cms_free:1 age:4    biased_lock:1 lock:2 (COOPs && biased object)
//  narrowOop:32 unused:24 cms_free:1 unused:4 promo_bits:3 ----->| (COOPs && CMS promoted object)
//  unused:21 size:35 -->| cms_free:1 unused:7 ------------------>| (COOPs && CMS free block)

执行<init>方法

执行<init>方法,即对象按照程序员的意愿进行初始化。对应到语言层面上讲,就是为属性赋值(注意,这与上面的赋零值不同,这是由程序员赋的值),和执行构造方法。

对象内存分配流程

对象栈上分配

我们通过JVM内存分配可以知道JAVA中的对象都是在堆上进行分配,当对象没有被引用的时候,需要依靠GC进行回收内 存,如果对象数量较多的时候,会给GC带来较大压力,也间接影响了应用的性能。为了减少临时对象在堆内分配的数量,JVM通过逃逸分析确定该对象不会被外部访问。如果不会逃逸可以将该对象在栈上分配内存,这样该对象所占用的 内存空间就可以随栈帧出栈而销毁,就减轻了垃圾回收的压力。

对象逃逸分析

就是分析对象动态作用域,当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参 数传递到其他地方中。

//user对象生命周期不确定
public` `User test1() {
 ``User user = ``new` `User();
 ``user.setId(``1``);
 ``user.setName(``"zhuge"``);
 ``//TODO 保存到数据库
 ``return` `user;
}
//user对象执行完销毁
public` `void` `test2() {
 ``User user = ``new` `User();
 ``user.setId(``1``);
 ``user.setName(``"zhuge"``);
 ``//TODO 保存到数据库
}

很显然test1方法中的user对象被返回了,这个对象的作用域范围不确定,test2方法中的user对象我们可以确定当方法结 束这个对象就可以认为是无效对象了,对于这样的对象我们其实可以将其分配在栈内存里,让其在方法结束时跟随栈内 存一起被回收掉。 JVM对于这种情况可以通过开启逃逸分析参数(-XX:+DoEscapeAnalysis)来优化对象内存分配位置,使其通过标量替换优 先分配在栈上(栈上分配),JDK7之后默认开启逃逸分析,如果要关闭使用参数(-XX:-DoEscapeAnalysis)

标量替换

通过逃逸分析确定该对象不会被外部访问,并且对象可以被进一步分解时,JVM不会创建该对象,而是将该 对象成员变量分解若干个被这个方法使用的成员变量所代替,这些代替的成员变量在栈帧或寄存器上分配空间,这样就 不会因为没有一大块连续空间导致对象内存不够分配。开启标量替换参数(-XX:+EliminateAllocations),JDK7之后默认 开启。

标量与聚合量

标量即不可被进一步分解的量,而JAVA的基本数据类型就是标量(如:int,long等基本数据类型以及 reference类型等),标量的对立就是可以被进一步分解的量,而这种量称之为聚合量。而在JAVA中对象就是可以被进一 步分解的聚合量。

栈上分配依赖于逃逸分析和标量替换

对象再Eden区分配

大多数情况下,对象在新生代中 Eden 区分配。当 Eden 区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

Eden与Survivor区默认8:1:1

大量的对象被分配在eden区,eden区满了后会触发minor gc,可能会有99%以上的对象成为垃圾被回收掉,剩余存活 的对象会被挪到为空的那块survivor区,下一次eden区满了后又会触发minor gc,把eden区和survivor区垃圾对象回 收,把剩余存活的对象一次性挪动到另外一块为空的survivor区,因为新生代的对象都是朝生夕死的,存活时间很短,所 以JVM默认的8:1:1的比例是很合适的,让eden区尽量的大,survivor区够用即可, JVM默认有这个参数-XX:+UseAdaptiveSizePolicy(默认开启),会导致这个8:1:1比例自动变化,如果不想这个比例有变 化可以设置参数-XX:-UseAdaptiveSizePolicy

大对象直接进入老年代

大对象就是需要大量连续内存空间的对象(比如:字符串、数组)。JVM参数 -XX:PretenureSizeThreshold 可以设置大 对象的大小,如果对象超过设置大小会直接进入老年代,不会进入年轻代,这个参数只在 Serial 和ParNew两个收集器下 有效。比如设置JVM参数:-XX:PretenureSizeThreshold=1000000 (单位是字节) -XX:+UseSerialGC,再执行下上面的第一 个程序会发现大对象直接进了老年代

为什么要这样呢?
为了避免为大对象分配内存时的复制操作而降低效率。

####长期存活的对象将进入老年代

既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在 老年代中。为了做到这一点,虚拟机给每个对象一个对象年龄(Age)计数器。 如果对象在 Eden 出生并经过第一次 Minor GC 后仍然能够存活,并且能被 Survivor 容纳的话,将被移动到 Survivor 空间中,并将对象年龄设为1。对象在 Survivor 中每熬过一次 MinorGC,年龄就增加1岁,当它的年龄增加到一定程度 (默认为15岁,CMS收集器默认6岁,不同的垃圾收集器会略微有点不同),就会被晋升到老年代中。对象晋升到老年代 的年龄阈值,可以通过参数 -XX:MaxTenuringThreshold 来设置。

对象动态年龄判断

当前放对象的Survivor区域里(其中一块区域,放对象的那块s区),一批对象的总大小大于这块Survivor区域内存大小的 50%(-XX:TargetSurvivorRatio可以指定),那么此时大于等于这批对象年龄最大值的对象,就可以直接进入老年代了, 例如Survivor区域里现在有一批对象,年龄1+年龄2+年龄n的多个年龄对象总和超过了Survivor区域的50%,此时就会 把年龄n(含)以上的对象都放入老年代。这个规则其实是希望那些可能是长期存活的对象,尽早进入老年代。对象动态年 龄判断机制一般是在minor gc之后触发的。

####老年代分配担保机制

年轻代每次minor gc之前JVM都会计算下老年代剩余可用空间 如果这个可用空间小于年轻代里现有的所有对象大小之和(包括垃圾对象) 就会看一个-XX:-HandlePromotionFailure(jdk1.8默认就设置了)的参数是否设置了 如果有这个参数,就会看看老年代的可用内存大小,是否大于之前每一次minor gc后进入老年代的对象的平均大小。 如果上一步结果是小于或者之前说的参数没有设置,那么就会触发一次Full gc,对老年代和年轻代一起回收一次垃圾, 如果回收完还是没有足够空间存放新的对象就会发生"OOM" 当然,如果minor gc之后剩余存活的需要挪动到老年代的对象大小还是大于老年代可用空间,那么也会触发full gc,full gc完之后如果还是没有空间放minor gc之后的存活对象,则也会发生“OOM

正文到此结束